Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Power Sources ; 559:232625, 2023.
Article in English | ScienceDirect | ID: covidwho-2180902

ABSTRACT

A photocathode-microbial electrochemical coupling system (PC-MFC) using black phosphorus-doped titanium dioxide nanobelt (BP/TB) as a photocatalyst is constructed for the degradation of hydroxychloroquine (HCQ, used to treat COVID-19). The degradation efficiency of HCQ (100 mg/L) in coupling system is 73.7% within 8 h, higher than that of photocatalysis (69.5%), MFC (25.6%), and adsorption (9.6%). The photocathode coupling facilitates subsequent bioelectric treatment, resulting in complete degradation of HCQ (100 mg/L) within 96 h in PC-MFC, much higher than in MFC (51.1%). Illumination of PC-MFC significantly increases the cathodic abundance of Pseudomonadales ord. (from 1.83% to 66.30%), accumulates biomass, improves the electrochemical behaviors of photocathode and bioanode, and finally increases the maximum power from 241 to 280 mW/m2. The electron transfer pathways depende on nicotinamide adenine dinucleotide dehydrogenase, succinate dehydrogenase and terminal oxidase. The coupled system enhances the dechlorination reduction of HCQ and reduces the biotoxicity of its degradation pathway. PC-MFC represents a new strategy for the treatment and energy recovery of refractory organic compounds in wastewater.

2.
Chemosphere ; 308(Pt 3): 136461, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031191

ABSTRACT

Because of the current COVID-19 outbreak all over the world, the problem of antiviral drugs entering water has become increasingly serious. Arbidol hydrochloride (ABLH) is one of the most widely used drugs against COVID-19, which has been detected in sewage treatment plant sediments after the COVID-19 outbreak. However, there has been no report on the degradation of ABLH. In order to remove ABLH we prepared a novel photocatalyst composed of Ti3C2 MXene and supramolecular g-C3N4 (TiC/SCN) via a simple method. The properties of the material were studied by a series of characterizations (SEM, TEM, EDS, XRD, FTIR, UV-vis, DRS, XPS, TPC, PL, EIS and UPS), indicating the successful preparation of TiC/SCN. Results show that 99% of ABLH was removed within 150 min under visible light illumination by the 0.5TiC/SCN (containing 0.5% of TiC). The performance of 0.5TiC/SCN was about 2.66 times that of SCN resulting from the formation of Schottky junction. Furthermore, under real sunlight illumination, 99.2% of ABLH could be removed by 0.5TiC/SCN within 120 min, which was better than that of commercial P25 TiO2. The pH, anions (NO3- and SO42-) and dissolved organic matter (fulvic acid) could significantly affect the ABLH degradation. Moreover, three possible degradation pathways of ABLH were proposed, and the toxicities of the corresponding by-products were less toxic than ABLH. Meanwhile, findings showed that the superoxide radicals played a major role in the photocatalytic degradation of ABLH by 0.5TiC/SCN. This study provides a well understanding of the mechanism of ABLH degradation and provides a valuable reference for the treatment of ABLH in water.


Subject(s)
COVID-19 , Titanium , Antiviral Agents , Catalysis , Humans , Indoles , Light , Sewage , Sulfides , Superoxides , Titanium/chemistry , Water
3.
Phytomedicine ; 90: 153635, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1275633

ABSTRACT

BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases and could occur in severe COVID-19 patients. Re-Du-Ning injection (RDN) is a tradition Chinese medicine preparation which has been clinically used for treatment of respiratory diseases including COVID-19. PURPOSE: To elucidate the potential mechanisms of RDN for the treatment of ALI. METHODS: Female C57BL/6J mice were used to establish ALI model by intraperitoneal injection 10 mg/kg LPS, and RDN injection was intraperitoneally administered with the dose of 5 and 10 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to NETs were analyzed by ELISA, immunofluorescence, Western blotting and network pharmacological approach. RESULTS: RDN robustly alleviated LPS-induced ALI. Meanwhile, RDN downregulated the expression of pro-inflammatory cytokines, such as IL-1ß, IL-6 and TNF-α. Specifically, RDN treatment inhibited the formation of neutrophil extracellular traps (NETs) and remarkably suppressed the protein of PAD4. The active compound from RDN decreased the phosphorylation of ERK1/2. CONCLUSION: These findings demonstrate that RDN ameliorates LPS-induced ALI through suppressing MAPK pathway to inhibit the formation of NETs.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal/pharmacology , Extracellular Traps , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Female , Lipopolysaccharides , Lung , Mice , Mice, Inbred C57BL
4.
Biomed Pharmacother ; 130: 110641, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-720419

ABSTRACT

BACKGROUND: An outbreak of Coronavirus Disease 2019 (COVID-19) which was infected by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is still spreading and has led to unprecedented health emergency over the world. Though no specific drug has been developed so far, emerging agents have been confirmed effective or potentially beneficial to restrain it. Lianhua Qingwen (LHQW) is a commonly used Chinese medical preparation to treat viral influenza, including in the fight against SARS in 2002-2003 in China. Recent data also showed that LHQW played a vigorous role in COVID-19 treatment. PURPOSE: This review will elucidate the pre-clinical and clinical evidence of LHQW in lung protection and antiviral activities, and provide timely data delivery for the exploration of effective treatment strategies in the therapy of COVID-19. STUDY DESIGN AND METHOD: The research data were obtained from the academic databases (up to August 8, 2020) including Pubmed, CNKI and Web of Science, on ethnobotany and ethno medicines. The search keywords for screening the literature information were "virus", "COVID-19", or "SARS-CoV-2", and "Lianhua Qingwen". The documents were filtered and summarized for final evaluation. RESULTS: The collected evidence demonstrated that LHQW exhibited benefits against COVID-19. Impressively, LHQW in conjunction with conventional treatment could significantly improve COVID-19 patients as a synergetic strategy. The mechanisms were mainly involved the antiviral activity, and regulation of inflammation response as well as immune function. CONCLUSION: Although the data were far from adequate, the latest advances had shown the benefits of LHQW in COVID-19, especially in combination with other antiviral drugs. This review provides comprehensive evidence of LHQW as a complementary strategy for treating COVID-19. Nevertheless, imperious researches should be conducted to clarify the unconfirmed effects, regulatory mechanisms and adverse reactions of LHQW in treating COVID-19 by means of well designed randomized controlled trials.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Humans , Lung/pathology , Medicine, Chinese Traditional/methods , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL